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1. Introduction 

Sun (2011) introduced a new semi-implicit, time integration scheme and simulated 
solutions to the cylindrical dam-break problem for the nonlinear shallow water 
equations. The scheme exhibited several important benefits relating to the overall 
stability of the integration and preservation of strong gradients in the calculated 
flow quantities. The integration reproduced the solutions of Godunov-type 
Riemann solvers comparing favorably to more sophisticated and more 
computationally intensive schemes. The new scheme is a 2-time-step scheme 
similar in structure to the forward-backward finite-difference scheme (Haltiner and 
Williams 1980). Thus, there is no computational mode, and incorporating a split-
time-step scheme in order to less frequently update slowly varying quantities will 
not require any time filtering (Hsu and Sun 2001). As part of the linear stability 
analysis, Sun (2011) showed that the scheme has a diffusion term similar to the 
Lax-Wendroff scheme; however, based on eigenvalue analysis, the amplification 
factor is unity for Courant numbers less than 1. 

Here we apply the scheme to the 3-dimensional (3-D) Navier-Stokes equations as 
a module in the Atmospheric Boundary Layer Environment (ABLE) model (Wang 
et al. 2012), a new computational fluid dynamics (CFD) model code in 
development at the US Army Research Laboratory. The model is being developed 
for eventual application to atmospheric, planetary boundary layer (PBL) flows in 
complex and urban terrain. Accurate simulation within the PBL necessarily 
includes producing fine-scale structures (e.g., thermal plumes in convective 
conditions [Moeng and Sullivan 1994], shear-layers [Chimonas 1999], and terrain-
induced vortex shedding/generation in stable conditions [Grubisic et al. 2008]), and 
excessive numerical diffusion may compromise their formation or severely degrade 
their evolution compared to observations.  

The new semi-implicit scheme was implemented as an option for the ABLE 
model’s dynamical core (version 0.90). In order to characterize the scheme’s 
performance, we simulated a 3-D lid-driven cavity flow (reviewed in Shankar and 
Deshpande [2000]) and compared the results simulations of Ku et al. (1987) and 
the laboratory measurements of Prasad and Koseff (1989). Lid-driven cavity flow 
is commonly used to evaluate numerical schemes because of the unambiguous 
boundary conditions, the detailed laboratory observations of Prasad and Koseff 
(1989), and features such as the intermittent and semi-permanent vortex structures 
shown in Fig. 1 (Shankar and Deshpande 2000). 
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Fig. 1 Diagram of lid-driven cavity flow and associated flow structures. The upper 
boundary of the box is moving with a velocity of 𝑼𝑼𝟎𝟎 in the positive x-direction. All boundaries 
are no-slip. Adapted from Shankar and Deshpande (2000). 

2. Methodology 

The general formulation for the semi-implicit scheme for a set of n prognostic 
variables, 𝜙𝜙𝑖𝑖, impacted by forcing functions, ℱ𝑖𝑖, is 

𝜕𝜕𝜙𝜙𝑖𝑖
𝜕𝜕𝜕𝜕

= −ℱ𝑖𝑖(𝜙𝜙1, … ,𝜙𝜙𝑛𝑛);  𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1,2,3. (1) 

Discretizing the above set of n equations, the semi-implicit scheme calculates the 
forcing at the midpoint between the 2 time steps, 𝑡𝑡 = 𝑡𝑡0 + Δt 2⁄ : 

𝜙𝜙𝑖𝑖(𝑥𝑥𝑗𝑗,Δt+𝜕𝜕0)−𝜙𝜙𝑖𝑖(𝑥𝑥𝑗𝑗,𝜕𝜕0)
Δt

= −ℱ𝑖𝑖 �𝜙𝜙1 �𝑥𝑥𝑗𝑗 , Δt
2

+ 𝑡𝑡0� , … ,𝜙𝜙𝑛𝑛 �𝑥𝑥𝑗𝑗 , Δt
2

+ 𝑡𝑡0�� ;  𝑖𝑖 =
1, … , 𝑛𝑛;  𝑗𝑗 = 1,2,3  (2) 

Approximating the prognostic variables at that midpoint is done using a truncated 
Taylor expansion with respect to time. The time derivatives in the first-order terms 
are then replaced by the forcing functions, ℱ𝑖𝑖, evaluated at 𝑡𝑡 = 𝑡𝑡0: 

𝜙𝜙𝑖𝑖 �𝑥𝑥𝑗𝑗 ,
Δt
2

+ 𝑡𝑡0� = +𝜙𝜙𝑖𝑖�𝑥𝑥𝑗𝑗 , 𝑡𝑡0� +
Δt
2
𝜕𝜕𝜙𝜙𝑖𝑖�𝑥𝑥𝑗𝑗 , 𝑡𝑡�

𝜕𝜕𝑡𝑡
�
𝜕𝜕=𝜕𝜕0

 

= 𝜙𝜙1�𝑥𝑥𝑗𝑗 , 𝑡𝑡0� + Δt
2
ℱ𝑖𝑖(𝜙𝜙1(𝑥𝑥𝑗𝑗, 𝑡𝑡0), … ,𝜙𝜙𝑛𝑛(𝑥𝑥𝑗𝑗 , 𝑡𝑡0)) (3) 

For the 3-D finite-volume formulation, the prognostic variables are density, 𝜌𝜌, 
momentum, 𝑈𝑈𝑖𝑖 = 𝜌𝜌𝑢𝑢𝑖𝑖, and density-coupled potential temperature, Θ = 𝜌𝜌𝜌𝜌. For the 
simulations reported below, the model is configured as a direct numerical 
simulation (DNS). Because the molecular diffusion terms are retained, runs must 
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be high enough resolution to resolve motions down into the dissipation subrange, 
where the magnitudes of these diffusion terms become of similar order to the other 
forcing. Because of the importance of accurately calculating the pressure gradient 
force in the momentum equations, the thermodynamic variables, 𝜌𝜌 and Θ, are 
updated first. Following the summation convention over repeated indices, the 
governing equations are 

𝛿𝛿 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

 (4) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜅𝜅 𝜕𝜕2

𝜕𝜕𝑥𝑥𝑗𝑗 𝜕𝜕𝑥𝑥𝑗𝑗
�𝜕𝜕
𝜕𝜕
� − 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�𝜕𝜕𝑈𝑈𝑗𝑗

𝜕𝜕
� (5) 

𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝜇𝜇 𝜕𝜕2

𝜕𝜕𝑥𝑥𝑗𝑗 𝜕𝜕𝑥𝑥𝑗𝑗
�𝑈𝑈𝑖𝑖
𝜕𝜕
� + 𝜌𝜌𝑔𝑔𝑖𝑖 −

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗
𝜕𝜕
� − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
 (6) 

where the pressure is calculated diagnostically from the Ideal Gas Law  
𝑃𝑃𝑐𝑐𝑝𝑝 𝑐𝑐𝑣𝑣⁄ = 𝑅𝑅 𝛩𝛩 𝑃𝑃0

𝑅𝑅 𝑐𝑐𝑝𝑝⁄⁄  and 𝛿𝛿 slows the propagation speed of acoustic waves  
(𝑐𝑐 = �𝛾𝛾𝑅𝑅 𝑇𝑇 𝛿𝛿⁄ ), allowing for longer time steps (Sun et al. 2012). R is the Universal 
Gas Constant divided by the mean molar mass of the fluid, and 𝑐𝑐𝑝𝑝 and 𝑐𝑐𝑣𝑣 are the 
appropriate specific heats at constant pressure and volume, respectively. The other 
variables are 𝜇𝜇, the molecular viscosity; 𝜅𝜅, the molecular conductivity; and 𝑔𝑔𝑖𝑖, the 
vector gravitational acceleration.  

Using the prognostic density equation requires temporally resolving the acoustic 
waves; thus, simulations employ exceedingly small time steps for integration 
(~10−4𝜏𝜏∗, the physical time scale). The simulations described in this study 
employed 𝛿𝛿 = 16, thus stable integration is achieved using a time step 4 times 
larger than normally required without significantly impacting flow structures larger 
than a few times the grid spacing (Sun et al. 2012). A time-splitting scheme, where 
the more slowly varying forcing mechanisms are updated less often (e.g., Hsu and 
Sun 2001), is another alternative to decreasing the required computational 
resources. 

The new model uses the quadratic upstream interpolation for convection kinetics 
(QUICK) finite-volume convection-diffusion scheme (Versteeg and Malalasekera 
2007) modified to allow non-uniform grid spacing. The volume elements for the 
components of the momentum field are staggered with respect to the mass field 
(Arakawa C-grid). The volume elements are configured so that complete mass-field 
volume elements are in contact with the wall (Fig. 2). The outermost staggered 
velocity volume elements are between the 2 outermost mass-field cells in the 
direction of the velocity. In this configuration, no pressure boundary condition is 
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required for the momentum equation. Dirichlet boundary conditions are imposed 
on all prognostic fields. 

 

Fig. 2 Arakawa C-grid configuration in the xy-plane for the scalar mass field and the U- 
and V-components of the momentum field. The vertical momentum is staggered in the vertical 
direction from the mass field points. 

Using the above semi-implicit scheme yields the following governing equations in 
Cartesian coordinates with fluxes computed on the surface of finite volume 
element: 

𝜌𝜌(𝐱𝐱,Δt + 𝑡𝑡0) − 𝜌𝜌(𝐱𝐱, 𝑡𝑡0) = − Δt
𝛿𝛿ΔV

� (ΔS𝑖𝑖
(+)𝑈𝑈𝑖𝑖

(+) − ΔS𝑖𝑖
(−)𝑈𝑈𝑖𝑖

(−))
3

𝑖𝑖=1
 (7) 

𝛩𝛩(𝐱𝐱,Δt + 𝑡𝑡0) − 𝛩𝛩(𝐱𝐱, 𝑡𝑡0) = Δt
ΔV
� �ΔS𝑗𝑗

(−) �
𝑈𝑈
_
𝑗𝑗
(−)〈𝜕𝜕〉(−)

𝜕𝜕
_ (−) − 𝜅𝜅 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗

〈𝜕𝜕〉(−)

𝜕𝜕
_ (−) � +

3

𝑗𝑗=1

ΔS𝑗𝑗
(+) �𝜅𝜅 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�〈𝜕𝜕〉

(+)

𝜕𝜕
_ (+) � −

𝑈𝑈
_
𝑗𝑗
(+)〈𝜕𝜕〉(+)

𝜕𝜕
_ (+) ��  (8) 

𝑈𝑈𝑖𝑖(𝐱𝐱,Δt + 𝑡𝑡0) − 𝑈𝑈𝑖𝑖(𝐱𝐱, 𝑡𝑡0) = Δt
ΔV
� �ΔS𝑗𝑗

(−) �
𝑈𝑈
_
𝑗𝑗
(−)〈𝑈𝑈𝑖𝑖〉(−)

𝜕𝜕
_ (−) − 𝜇𝜇 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗

〈𝑈𝑈𝑖𝑖〉(−)

𝜕𝜕
_ (−) � +

3

𝑗𝑗=1

ΔS𝑗𝑗
(+) �𝜇𝜇 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗

〈𝑈𝑈𝑖𝑖〉(+)

𝜕𝜕
_ (+) −

𝑈𝑈
_
𝑗𝑗
(+)〈𝑈𝑈𝑖𝑖〉(+)

𝜕𝜕
_ (+) �� + Δt𝜌𝜌

_
𝑔𝑔𝑖𝑖 −

Δt
ΔV
�𝑃𝑃(+)ΔS𝑖𝑖

(+) − 𝑃𝑃(−)ΔS𝑖𝑖
(−)� (9) 

where the indices, i,j=1,2,3, indicate the vector components and cell faces in each 
direction. The superscripts (+) and (–) indicate values on the cell faces in the 
positive or negative direction from the cell center; ΔS𝑖𝑖

(+) and ΔS𝑖𝑖
(−) are the surface 

elements of the cell faces in the i-direction. With the staggered grid, the momentum 
flux contributions in the continuity equation and the pressure gradient term in the 
momentum equation are directly calculated rather than using interpolated values. 
Two types of interpolation are used for the convection-diffusion terms. An over bar 
indicates simple linear averaging between grid cell centers, if necessary; because 
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of the cell staggering employed, not all faces will require interpolation to find 
values on the faces. The 〈 〉 operator indicates quadratic, upwind-weighted 
interpolation between surrounding cell centers in the direction of the flow through 
the face, as discussed in Versteeg and Malalasekera (2007).  

The integration process is described using the above equations: 

1) Using the discretized momentum equation (Eq. 9), calculate 𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝜕𝜕0

 in order to 

estimate the half-step momentum, 𝑈𝑈𝑖𝑖(𝐱𝐱, 𝑡𝑡0 + 𝛥𝛥𝜕𝜕
2

).  

2) With the half-step momentum, advance the density a full time step (Eq. 7), and 
calculate the half-step density as a linear average between the old and updated 
densities.  

3) The density-coupled potential temperature is then advanced by a half time step 
using the first-order Taylor expansion; the full-time-step advancement follows 
employing the updated mid-time-step density and density-coupled potential 
temperature.  

4) With the updated scalar quantities, the mid-time-step pressure is calculated, and 
the momentum equation is advanced to the next full time step.  

5) Finally, as recommended in Sun (2011), a light application of fourth-order 
Shuman smoothing (e.g., Haltiner and Williams [1980] or Shapiro [1975]) 
eliminates short-wave instability.  

We found stable time integration for all simulations using 20% of the maximum 
smoothing coefficient and smoothing every 16 time steps.  

3. Results 

The ABLE model, using the above governing equations, simulated 3-D lid-driven 
cavity flow; results are compared with the laboratory measurements of Prasad and 
Koseff (1989). We specifically looked at the cases where the stream-wise, span-
wise and vertical lengths were all equal (SOR=1) and Reynolds numbers were 
Re=1000, Re=3200, and Re=10,000. The results are normalized by the flow scales: 
the length scale, 𝐿𝐿, is the cube width; the velocity scale, 𝑈𝑈0, is the speed of the 
moving, upper lid; and the time scale is 𝜏𝜏 = 𝐿𝐿/𝑈𝑈0. 

3.1 Discretization Error 

The theoretical accuracy of the numerical schemes has been derived in Sun (2011) 
and Versteeg and Malalasekera (2007) as second-order accurate in time and, when 
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using the QUICK scheme, third-order accurate in space. As implemented in the 
model source code, the spatial accuracy decreases due to the boundary condition 
treatment in both the convection-diffusion scheme and the smoothing routine. 

The temporal accuracy was measured by simulating cavity flow for Re=10,000 
using a mesh with 304×304×304 grid points. The simulation used δ=16 for a 4 
times reduction in the speed of sound; the largest time step satisfied the Courant-
Freidrichs-Levy (CFL) criterion for the slowed acoustic waves with a value of 
5.8×10-5τ. Three additional simulations were performed using time steps of 1/2, 1/4, 
and 1/8 of the largest time step. The L2-norm of the difference between each 
simulation and the simulation with the smallest time step taken at t=5.8τ (105 
iterations of the largest timestep) is shown in Fig. 3 along with the line representing 
second-order accuracy in time. 

 

Fig. 3 Estimate of temporal discretization error based on lid-driven cavity flow simulations 
with Re=10,000. The largest time step satisfied the CFL criterion for the reduced speed 
acoustic waves. Additional simulations were performed using an identical grid, but with time 
steps reduced by factors of 1/2, 1/4, and 1/8, which was used as the reference state. 

For the spatial error estimates, simulations were performed with Re=1000 to reduce 
the computational requirements. The QUICK scheme is third-order accurate in 
space. However, the boundary condition treatment for both the convection-
diffusion scheme and the explicit smoothing degrades the accuracy. Four 
simulations with differing grid spacings were performed; 75, 150, 300, and 450 grid 
points were used in each Cartesian direction. The time steps for all of the 
simulations were set at the time step satisfying the CFL criterion for the 450-grid 
point mesh, and the simulations were allowed to integrate t=40τ (~106 time steps). 
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The coarser resolution simulations were compared with the finest resolution using 
third-order splines to interpolate between grid points. Mean absolute error of the 
difference between the interpolated values and the 450-grid-point simulation were 
then calculated over the area at the same physical time, t=40τ, and plotted in Fig. 4. 

(a)  

    (b)  

Fig. 4 Spatial discretization error estimates using stream-wise and vertical velocities in the 
plane of symmetry (y=0) for Re=1000. The error is the L2-norm of the variable difference from 
a reference simulation that used 450 grid points in each direction. For a) the error is calculated 
over the entire symmetry plane and for b) 20% of each side of the symmetry plane is excluded. 

The error estimates are calculated for the stream-wise and vertical velocities for 2 
regions of the central symmetry plane (y=0). The first region is the complete xz-
slice through the center of the computational domain. The second region excludes 
20% of the grid points along each boundary. Comparing Fig. 4a and 4b, it is readily 
apparent that most of the error results from the boundary condition treatment; the 
larger magnitude of the upper boundary condition of the u-velocity contributes 
more to the mean absolute error. The QUICK scheme is a third-order scheme, but 
the second-order treatments for both convection-diffusion and second-order 
smoothing at the wall boundaries degrades the discretization error to match second 
order in space. 
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3.2 Comparison with Simulation and Observations 

The simulations were conducted as DNSs requiring high resolution in order to 
resolve motions into the dissipation sub-range: at least 75, 200, and 300 grid points 
in each direction for Re=1000, Re=3200, and Re=10,000, respectively. Gravity was 
disabled for these simulations and the potential temperature was fixed. 

For Re=1000, the new model simulations are compared with the simulation data of 
Ku, Hirsh, and Taylor (1987), which employed a spectral DNS to solve for the  
3-D flow field. Their 3-D simulations showed a significant change in the profile 
when compared with the horizontal and vertical centerline velocity profiles 
generated using 2-dimensional (2-D) simulations. Fig. 5 shows the stream-wise 
velocity along the central vertical axis of the symmetry plane and the vertical 
velocity along the central horizontal axis. All the simulations were in close 
agreement with the simulations of Ku, Hirsh, and Taylor (1987). 

  



 

9 
 

(a)  

(b)  

Fig. 5 a) Stream-wise velocity along the central vertical axis and b) vertical velocity along 
the central horizontal axis for Re=1000. The model simulations used 75, 150, 300, and 450 grid 
points in each direction and are compared with the simulations of Ku, Hirsh, and Taylor 
(1987). 

The simulations at higher Reynolds number (Re = 3200 and Re = 10,000) are 
verified against the laboratory observations of Prasad and Koseff (1989). For better 
comparison with the statistics of the Doppler velocimetry observations, the points 
along the central vertical axis in the symmetry plane (x = y = 0) and the central 
horizontal axis (y = z = 0) in the symmetry plane were written for every time step, 
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which was ~10−4𝜏𝜏 (Re=3200) and ~5 × 10−5𝜏𝜏 (Re=10,000). For both cases, the 
model was integrated for a physical time of approximately 120𝜏𝜏. 

A representative sample of the evolution of the flow for Re=3200 is shown in the 
density and streamline plots of Fig. 6. The simulation was allowed to achieve quasi-
steady-state, which exhibited a periodic shedding of the downstream secondary 
eddy (DSE) and the upstream secondary eddy (USE) (see Fig. 1). The flow shows 
the prototypical state with a large primary eddy (PE) and well-defined secondary 
eddies—the DSE, the USE, and a small deviation for the upper upstream eddy 
(UUE) (see Fig. 1). The DSE is then shed into the primary flow, causing the 
downstream flow to wrap around the PE further from the lower wall. As the DSE 
is absorbed into the PE and USE is shed into the primary circulation, the upward 
flow near the bottom boundary weakens, leading to a rapid drop in the level that 
the downstream flow becomes horizontal. This drop is associated with an 
acceleration of the downstream flow, which reestablishes the DSE and then the 
USE. For the higher-Re flow, there is a similar DSE and USE shedding process; the 
spike in the vertical velocity variance is lower magnitude and narrower due to the 
decreased viscous diffusion.  

The flow took approximately 35𝜏𝜏 to achieve quasi-steady-state, which forms the 
lower boundary of the window used to calculate the mean and second-order 
statistics. Comparing the simulation results to the observations, we see excellent 
agreement with the mean features (Fig. 7). The sharp gradients in the mean field, 
especially near the walls, are well represented. The downstream flow (near the right 
wall) is highly localized in both simulations, with the expected wider profile for the 
lower-Re flow.  
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(a)

 

(b)

 

(c)

 

(d)

 

Fig. 6 Streamlines and UW-velocity magnitudes (Re=3200) showing a) at 𝒕𝒕 = 𝟗𝟗𝟎𝟎𝟗𝟗, a well-
defined DSE and localized downstream flow along the right, boundary; b) at 𝒕𝒕 = 𝟗𝟗𝟗𝟗𝟗𝟗, the 
shedding of the DSE raising the level that the downstream maximum wraps around the PE; 
c) at 𝒕𝒕 = 𝟗𝟗𝟗𝟗𝟗𝟗, drop and acceleration of the downstream flow; and d) at 𝒕𝒕 = 𝟏𝟏𝟎𝟎𝟏𝟏𝟗𝟗, 
reestablishment of the DSE and thinning of the downstream maximum. 
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(a)  

(b)  

Fig. 7 Non-dimensional mean horizontal and vertical velocity fields along the x- and z-axes 
in the symmetry plane (y=0) for a) Re=3200 and b) Re=10,000 

The features of the velocity variances (Fig. 8, scaled for clarity) also capture the 
observed behavior described by Prasad and Koseff (1989). The high-peaks in the 
vertical velocity variance near the right lateral boundary are associated with the 
thickening and thinning of the high-velocity shear layer associated with the 
shedding of the DSE vortex in the corner described above. Using a lower order 
convection-diffusion scheme (such as upwind-differencing) with excessive 
numerical diffusion did generate the secondary vortices; however, the shedding 
process was eliminated. The flow, instead, generated a stable PE with steady DSE 
and USE. The shedding of the DSE (and USE) has impacts as discussed in Prasad 
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and Koseff (1989): 1) sharp increase in the velocity variance along the lower 
boundary due to said eddies crossing the centerline and 2) the thickening and 
thinning of the high-velocity downward boundary layer along the vertical wall on 
the downstream side, appearing as a spike in the vertical velocity variance. The 
greater turbulent diffusion associated with the higher-Re flow leads to a less 
localized increase in the horizontal velocity variance along the bottom boundary. 

(a)  

(b)  

Fig. 8 Scaled horizontal and vertical velocity variances along the x- and z-axes in the 
symmetry plane (y=0) for a) Re=3200 and b) Re=10,000 

The effect of the shedding of the DSE and USE also has significant effect on the 
velocity covariances (Fig. 9, scaled for clarity) producing a large positive value 
along the right lateral boundary. An increase in downward velocity (-w’) is 
associated with the thickening (in the negative x-direction) for the downstream flow 
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(-u’). Similarly, the slowing of the flow (+w’) is associated with the rightward 
motion, thinning the downstream flow (+u’).  

(a)  

(b)  

Fig. 9 Scaled horizontal and vertical velocity covariances along the central axes in the 
symmetry plane (y=0) for a) Re=3200 and b) Re=10,000 

The large positive peak in the 𝑢𝑢𝑢𝑢����-covariance near the bottom boundary for the low-
Re simulation was described in Prasad and Koseff (1989) as being caused by the 
meandering of the Taylor-Goertler-like (TGL) vortices on the Re=3200 flow  
(Fig. 10). As the TGL vortices approach the symmetry plane, the vertical velocity 
increases, and the horizontal velocity maximum moves upwards, yielding a 
decrease in the negative, x-component of the velocity (i.e., +u’) relative to the mean 
near the surface boundary, and an increase in the negative U-velocity above  
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(i.e., -u’). Coupled with the upward motion (+w’), the movement of the TGL 
vortices close to the symmetry plane contributes to a sharp positive increase in the 
𝑢𝑢𝑢𝑢����-covariance below the mean U-velocity maximum. Above the mean U-velocity 
maximum, the covariance will exhibit a negative peak. The observations from 
Prasad and Koseff (1989) show a meandering period of about 70𝜏𝜏, whereas the 
simulations showed a much smaller meandering period of approximately 14𝜏𝜏.  

(a)

 

(b)

 

(c)

 

(d)

 

Fig. 10 Streamline and VW-velocity magnitudes for the same times shown in Fig. 6  
a) 𝒕𝒕 = 𝟗𝟗𝟎𝟎𝟗𝟗, b) 𝒕𝒕 = 𝟗𝟗𝟗𝟗𝟗𝟗, c) 𝒕𝒕 = 𝟗𝟗𝟗𝟗𝟗𝟗, and d) 𝒕𝒕 = 𝟏𝟏𝟎𝟎𝟏𝟏𝟗𝟗. This progression of figures shows the 
meandering of the TGL vortices near the symmetry plane (Y*=0).  

For the Re=10,000 flow, the TGL vortices have a less regular configuration and are 
transient (Fig. 11). In addition, the mean U-velocity maximum is closer to the lower 
boundary. There is a small positive incursion in the 𝑢𝑢𝑢𝑢����-covariance near the lower 
boundary; however, during DSE shedding events most of the lower part of the 
domain experiences negative x-acceleration (increase in negative U-velocity), with 
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an increase in the upward component or a positive x-acceleration (decrease in 
negative U-velocity) during the downward shift of the velocity maximum. 

 

Fig. 11 Streamlines and VW-velocity magnitude for Re=10,000 at time, 𝒕𝒕 = 𝟏𝟏𝟏𝟏𝟎𝟎𝟗𝟗. For the 
higher-Re flow the vortices generated near the lower boundary are irregular and transient. 

4. Conclusion 

We extended the time integration scheme of Sun (2011) to 3-D Navier-Stokes and 
implemented the scheme in the ABLE model. The scheme was straightforward to 
implement and parallelize using Message Passing Interface (MPI) (optimizing 
ABLE for heterogeneous platforms (e.g., general purpose computing on a graphics 
processing unit [GPGPU] is in progress). The model showed favorable stability and 
fidelity characteristics when applied to lid-driven cavity flow at Re=1000, 
Re=3200, and Re=10,000. The simulations accurately reproduced the mean velocity 
fields and the second-order statistics along the symmetry plane (y=0) when 
compared with other 3-D simulations of Ku, Hirsh, and Taylor (1987) and the 
laboratory observations of Prasad and Koseff (1989). The initially imposed, random 
perturbations in the density field (initially, ~10−5𝜌𝜌0) are maintained because of the 
lower numerical diffusion, despite the smooth nature of the boundary conditions, 
the use of Shuman smoothing to control short-wave instability, and the small time 
steps required. Maintaining small random perturbations in the flow preserved the 
transient nature of the flow structures, such as the formation and shedding of the 
DSE, USE, and TGL vortices. Associated with the shedding of the corner eddies is 
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the alternating thickening and thinning of the lateral boundary layer, leading to the 
spikes in the vertical velocity variance, 𝜎𝜎𝑤𝑤, above the DSE and above the lower 
boundary. The production and meandering of TGL vortices in the Re=3200 flow 
leads to a large positive value for the 𝑢𝑢𝑢𝑢����-covariance, as observed in the laboratory.  
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional  

3-D three-dimensional 

ABLE Atmospheric Boundary Layer Environment  

CFD computational fluid dynamics  

CFL Courant-Freidrichs-Levy 

DNS direct numerical simulation 

DSE downstream secondary eddy 

DSRC Defense Shared Resource Centers  

GPGPU general purpose computing on a graphics processing unit  

HPC high-performance computing 

HPCMO  High-Performance Computing Modernization Office 

MPI Message Passing Interface 

PBL planetary boundary layer 

PE primary eddy 

QUICK quadratic upstream interpolation for convective kinetics 

TGL Taylor-Goertler like 

USE upstream secondary eddy 

UUE upstream upper eddy 
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